Calculate ToxPi Scores for the given model and input data
Source:R/allGenerics.R
, R/methods-TxpModel.R
, R/methods-TxpModelList.R
, and 1 more
txpCalculateScores.Rd
Calculate ToxPi Scores for the given model and input data
Usage
txpCalculateScores(model, input, ...)
# S4 method for class 'TxpModel,data.frame'
txpCalculateScores(
model,
input,
id.var = NULL,
rank.ties.method = c("average", "first", "last", "random", "max", "min"),
negative.value.handling = c("keep", "missing")
)
# S4 method for class 'TxpModelList,data.frame'
txpCalculateScores(
model,
input,
id.var = NULL,
rank.ties.method = c("average", "first", "last", "random", "max", "min"),
negative.value.handling = c("keep", "missing")
)
# S4 method for class 'list,data.frame'
txpCalculateScores(
model,
input,
id.var = NULL,
rank.ties.method = c("average", "first", "last", "random", "max", "min"),
negative.value.handling = c("keep", "missing")
)
Arguments
- model
TxpModel object or TxpModelList object
- input
data.frame object containing the model input data
- ...
Included for extendability; not currently used
- id.var
Character scalar, column in 'input' to store in
- rank.ties.method
Passed to
rank.ties.method
slot- negative.value.handling
Passed to
negative.value.handling
slot
Value
TxpResult or TxpResultList object
Details
txpCalculateScores
is implemented as an S4 generic function with methods
for TxpModel and TxpModelList.
Ranks are calculated such that the highest ToxPi score has a rank of 1.
Missingness is determined after applying input-level transformations but before applying slice-level transformations.
Examples
## Load example dataset & model; see ?TxpModel for building model objects
data(txp_example_input, package = "toxpiR")
data(txp_example_model, package = "toxpiR")
## Calculate scores for single model; returns TxpResult object
res <- txpCalculateScores(model = txp_example_model,
input = txp_example_input,
id.var = "name")
## Calculate scores for list of models; returns TxpResultList object
txpCalculateScores(model = TxpModelList(m1 = txp_example_model,
m2 = txp_example_model),
input = txp_example_input,
id.var = "name")
#> TxpResultList of length 2: m1 m2
resLst <- txpCalculateScores(model = list(m1 = txp_example_model,
m2 = txp_example_model),
input = txp_example_input,
id.var = "name")